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FREE VIBRATION ANALYSIS OF SHELLS OF
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An efficient substructuring analysis method is presented for predicting the natural
frequencies of shells of revolution which may have arbitrary shape of meridian, general type
of material property and any kind of boundary condition. This method is developed in the
context of first order shear deformation shell theory as well as the classical thin shell theory.
The vibrational behaviours of a circular cylinder, an elliptic hyperboloid shell (modelling
a cooling tower) and a complete spherical shell are investigated using this method.
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1. INTRODUCTION

As shell structures have comparatively light weight and high load capacity and are able
to provide a big span of space, they have been widely used in aerospace engineering, marine
engineering, power plant engineering and civil engineering. The understanding of their
mechanical behaviour under static, dynamic and thermal loads is of considerable
importance. Although the history of the investigations into the mechanical behaviour of
shell structures can be traced back to about a century ago, finding a satisfactory solution
for a general shell structure with any kind of boundary specification is still a big challenge
both analytically and numerically [1, 2].

A shell of revolution is a special type of shell structure which is axi-symmetric. This
paper proposes a numerical method in the context of both the first order shear deformation
shell theory (SDST) and the classical thin shell theory (TST) for analyzing the vibrational
behaviour of a shell of revolution which may have an arbitrarily shaped meridian, general
type of material property and any kind of boundary condition. This method is very efficient
because it effectively uses the symmetry property of a shell of revolution. The shell of
revolution is discretized by the meridians circumferentially, and general spline functions
and Lagrangian polynomials are used to represent the displacement variations along the
meridian and in the circumferential direction in an element, respectively. So the shape
function of an element is a mix of a spline family and a Lagrangian polynomial family.
As higher degree of spline functions and higher order of Lagrangian polynomials are used
for an element, the higher order of displacement continuity is preserved. In finding the
natural frequencies of a shell of revolution, the Sturm sequence method [3, 4] is used in
conjunction with the massive substructuring technique. The vibrational behaviour of a
circular cylinder, an elliptic hyperboloid shell and a spherical shell are investigated with
respect to the different kinds of material property that they have.
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2. DISPLACEMENT REPRESENTATION OF AN ELEMENT

2.1.     

Figure 1 shows a basic element of a shell of revolution which may, in general, be a
laminate having arbitrary lay-up of a number of layers of fibre-reinforced composite
material. In the element, the natural co-ordinates are used. For a shell of revolution, this
natural co-ordinate system is orthogonal and happens to be the lines of curvature.

According to the first order shear deformation shell theory [5, 6], the behaviour of the
shell is characterized by the five fundamental displacement-type quantities indicated in
Figure 1, namely u, v and w, the translational displacements at the middle surface in the
s, t and z directions, respectively, and cs and ct , the rotations of the middle surface normal
along the s and t directions, respectively. However, in the classical thin shell theory the
Kirchhoff normal rotation condition is invoked and the rotation cs and ct are directly
related to the deflection w and displacements u and v by the way of equations:

cs = u/Rs − 1w/1s, ct = v/Rt − 1w/1t. (1)

It follows, of course, that shell behaviour in TST analysis can be represented by three
fundamental quantities, namely u, v and w, rather than the five fundamental quantities
of SDST analysis.

In the present approach, the physical displacements are only specified at some locations
on several so called reference meridians. The displacements elsewhere in the element are
interpolated from them. On the reference meridians, spline interpolation is used. Between
the reference meridians, polynomial interpolation is used.

2.2.     

Let bi
m,n (s) be the basis spline function of degree m defined on the ith reference meridian

with the knot sequence (si
n )n$Z (Z is the set of integer numbers). It can be proved that the

basis spline function is unique and can be expressed as a linear combination of the so-called
truncated power functions which are typical cardinal spline functions, i.e., [7]

bi
m,n (s)= s

0E kEm+1

ai
k,n (s− si

n+ k )m
+, (2)

where (s− si
n+ k )+ = sup (s− si

n+ k , 0), and the real coefficients ak,n satisfy the following
equations [7]:

Figure 1. An element.
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s
0E kEm+1

ai
k,n (si

l − si
n+ k )m =0, (l= n+1, . . . , n+m+1), (3)

s
0E kEm+1

ai
k,n (si

n+m+1 − si
n+ k )m+1 =m+1. (4)

Let f (s, t) be a continuous function, for example it may be u(s, t), v(s, t), w(s, t), cs (s, t)
or ct (s, t). When t is constrained on the ith reference meridian, i.e., t= ti (s), f(s, ti (s))
becomes a continuous function on it. So, f(s, ti (s)) can be approximated by the spline
interpolation as follows,

f (s, ti (s))= s
Ni

s

n=1

an,i bi
m,n (s), (5)

where an,i are interpolation coefficients which should be determined by the specified
conditions of f(s, ti (s)) on the reference meridian, and Ni

s is the total number of basis
splines used for the ith meridian. The specified conditions of f(s, ti (s)) are chosen to be:

fi =[f(s1, ti (s1)), f (1)(s1, ti (s1)), . . . , f (ml)(s1, ti (s1)), f(s2, ti (s2)), f(s3, ti (s3)), . . . ,

f(sNi
s −m , ti (sNi

s −m )), f (1)(sNi
s −m , ti (sNi

s −m )), . . . , f (mr)(sNi
s −m , ti (sNi

s −m ))]T, (6)

where ml =m/2−mod(m, 2), mr =m−ml −1.
Substituting these specified conditions in equation (5), the obtained an,i are,

ai =R−1
i fi , (7)

where the elements of Ri are,

Ri (l, k)= 8b
i(n)
m,k (s1)

bi
m,k (sn )

bi(n)
m,k (sNi

s −m+1)

(l= n+1; n=0, 1, . . . , ml ; k=1, 2, . . . , Ni
s )

(l=ml + n; n=2, 3, . . . , Ni
s −m; k=1, 2, . . . , Ni

s)
(l=Ni

s −mr + n; n=0, 1, . . . , mr ; k=1, 2, . . . , Ni
s )
, (8)

and ai =[a1,i , a2,i , . . . , aNi
s, i]T.

Combining equations (5) and (7), the spline interpolation of f(s, ti (s)) with its specified
values is,

f(s, ti (s))=Bi
m (s)fi , (9)

where

Bi
m (s)= [bi

m,1 (s), bi
m,2 (s), . . . , bi

m,Ni
s
(s)]R−1

i . (10)

2.3.        

When s is fixed, f(s, t) becomes a continuous function in the circumferential t-direction
whose values are restricted to f(s, ti (s)) on its junctions with the reference meridians. As
only C0-type continuity is required on the displacements in SDST, the Lagrangian
polynomial interpolation could be used in this direction. Therefore, f(s, t) can be
approximated as,

f(s, t)= s
ip

i=1

Pi (t, s)f(s, ti (s)), (11)
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where Pi (t, s) (i=1, 2, . . . , ip ) are Lagrangian polynomial functions, for instance when
ip =4, they are,

P1 (h)= (−1+ h+9h2 −9h3)/16, P2 (h)= (9−27h−9h2 +27h3)/16,

P3 (h)= (9+27h−9h2 −27h3)/16, P4 (h)= (−1− h+9h2 +9h3)/16, (12)

where h=2t/b(s), and b(s) is the circumferential arc length of the element at the position
s on the meridian.

2.4.        

In classical thin shell theory, the continuity requirement on displacements u(s, t) and
v(s, t) is the same as that in SDST. So, they can be approximated in the same way as before
using equation (11). However, as the Kirchhoff condition expressed by equation (1) the
requirement of the C1-type continuity of w(s, t) is necessary. That means the first
derivatives of w(s, t) in the circumferential direction (i.e., 1w/1t) should be used as
freedoms at the outside meridians of the element. This condition limits the choice for the
interpolation function for w(s, t) in the circumferential direction. When ip =4, Hermitian
functions satisfy this condition. They are,

P1H (h)= (2−3h+ h3)/4, P2H (h)= b(1− h− h2 + h3)/8,

P3H (h)= (2+3h− h3)/4, P4H (h)= b(−1− h+ h2 + h3)/8, (13)

where h=2t/b(s). In this case, the approximation of w(s, t) can be expressed as,

w(s, t)= s
4

i=1

PiH (t, s)Bi
m3

(s)wi . (14)

In summary, the displacement field of an element in SDST can be constructed as,

u(s, t)= s
ip

i=1

Pi (t, s)Bi
m1

(s)ui , v(s, t)= s
ip

i=1

Pi (t, s)Bi
m2

(s)vi , (15, 16)

w(s, t)= s
ip

i=1

Pi (t, s)Bi
m3

(s)wi , ct (s, t)= s
ip

i=1

Pi (t, s)Bi
m4

(s)cti , (17, 18)

cs (s, t)= s
ip

i=1

Pi (t, s)Bi
m5

(s)csi , (19)

where m1, m2, m3, m4 and m5 are the degrees of the basis spline functions used for
interpolating u, v, w, ct and cs , respectively. And the displacement field of an element in
TST are expressed by equations (14), (15) and (16).

3. CHARACTERISTIC MATRICES OF A SDST ELEMENT

3.1.  

Within the context of first order SDST the linear constitutive equations for an arbitrary
laminate are,

F=Le. (20)
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where

F=[Ns , Nt , Nst , Ms , Mt , Mst , Qt , Qs ]T, (21)

A11 A12 A16 B11 B12 B16 0 0

A22 A26 B21 B22 B26 0 0

A66 B61 B62 B66 0 0

D11 D12 D16 0 0G
G

G

G

G

G

G

G

G
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k

G
G

G

G

G

G

G

G

G

L

l

L=
D22 D26 0 0

, (22)

Sym. D66 0 0

A44 A45

A55

1u/1s+w/Rs

1v/1t+w/Rt

1u/1t+ 1v/1s

1cs /1s G
G

G

G

G

G

G

G

G

L

l

e=G
G

G

G

G

G

G

G

G

K

k

1ct /1t
. (23)

1cs /1t+ 1ct /1s+ 1
2 (1/Rt −1/Rs ) (1v/1s− 1u/1t)

1w/1t+ct − v/Rt

1w/1s+cs − u/Rs

The laminate stiffness coefficients in equation (22) are defined in the standard way [5, 6].
The explicit expressions for the strain vector e in the specified values of the displacement
field can be obtained as follows using equations (15)–(19).

e= s
ip

i=1

Fi di , (24)

where

di =[uT
i , vT

i , wT
i , cT

ti , cT
si ]

T, (25)

and

Pi Bi'm1 0 (1/Rs )Pi Bi
m3

0 0

0 P'i Bi
m2

(1/Rt )Pi Bi
m3

0 0

P'i Bi
m1

Pi Bi'm2 0 0 0

0 0 0 0 0
G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

Fi = 0 0 0 P'i Bi
m4

0
.

1
2 (1/Rs −1/Rt )P'i Bi

m1

1
2 (1/Rt −1/Rs )Pi Bi'm2 0 Pi Bi'm4 P'i Bi

m5

0 −(1/Rt )Pi Bi
m2

P'i Bi
m3

Pi Bi
m4

0

−(1/Rs )Pi Bi
m1

0 Pi Bi'm3 0 Pi Bi
m5

(26)
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3.2.  

The strain energy of an element is,

U= 1
2 g

A

0 g
b(s)/2

−b(s)/2

eTLe dt ds. (27)

Its quadratic form in the specified values of the displacement field follows after substituting
equation (24) into equation (27).

U= 1
2 g

A

0 g
b(s)/2

−b(s)/2

s
ip

i=1

s
ip

j=1

dT
i FT

i LFj dj dt ds= 1
2 dTkd, (28)

where

d=[dT
1 , dT

2 , . . . , dT
ip ]

T, k=[kij ], (29, 30)

with

kij =g
A

0 g
b(s)/2

−b(s)/2

FT
i LFj dt ds. (31)

Matrix k is the stiffness matrix of the element.

3.3.  

When the structure undergoes harmonic motion with the amplitudes of u, v, w, ct and
cs and natural frequency v, the maximum kinetic energy in an element is,

Tmax = 1
2 v2 g

A

0 g
b(s)/2

−b(s)/2

aTHa dt ds, (32)

where

1

1

a=[u, v, w, ct , cs ]T, H= hrG
G

G

G

G

K

k

1 G
G

G

G

G

L

l

. (33, 34)

h2/12

h2/12

The explicit expression for a in the specified values of the displacement field can be
obtained as follows using equations (15)–(19),

a= s
ip

i=1

Gi di , (35)

where

Pi Bi
m1

Pi Bi
m2

Gi =G
G

G

G

G

K

k

Pi Bi
m3

G
G

G

G

G

L

l

. (36)

Pi Bi
m4

Pi Bi
m5
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To obtain the quadratic form for the maximum kinetic energy in the specified values of
the displacement field, substitute equation (35) into equation (32) to give,

Tmax = 1
2 v2 g

A

0 g
b(s)/2

−b(s)/2

s
ip

i=1

s
ip

j=1

dT
i GT

i HGj dj dt ds= 1
2 v2dTmd, (37)

where

m=[mij ], (38)

with

mij =g
A

0 g
b(s)/2

−b(s)/2

GT
i HGj dt ds. (39)

Matrix m is the mass matrix of the element.

4. CHARACTERISTIC MATRICES OF A TST ELEMENT

4.1.  

They can again be expressed by matrix equation (20). But the definitions of F, L and
e change to,

A11 A12 A16 B11 B12 B16

A22 A26 B21 B22 B26

A66 B61 B62 B66

F=[Ns , Nt , Nst , Ms , Mt , Mst ]T, L=G
G

G

G

G

K

k

D11 D12 D16
G
G

G

G

G

L

l

,

Sym. D22 D26

D66

(40, 41)

1u/1s+w/Rs

1v/1t+w/Rt

1u/1t+ 1v/1s
e=G

G

G

G

G

K

k

−12w/1s2 + (1/Rs ) 1u/1s
G
G

G

G

G

L

l

. (42)

−12w/1t2 + (1/Rt ) 1v/1t

−2 12w/1s 1t− 1
2 (3/Rt −1/Rs ) 1v/1s− 1

2 (3/Rs −1/Rt ) 1u/1t

Substituting equations (14), (15) and (16) into equation (42) gives the explicit expression
for e in the specified values of the displacement field.

e= s
ip

i=1

Fi di , (43)

where

di =[uT
i , vT

i , wT
i ]T, (44)

and
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Pi Bi'm1 0 (1/Rs )NiH Bi
m3

0 P'i Bi
m2

(1/Rt )NiH Bi
m3

P'i Bi
m1

Pi Bi'm2 0
Fi =G

G

G

G

G

G

G

K

k

(1/Rs )Pi Bi'm1 0 −PiH Bi0m3

G
G

G

G

G

G

G

L

l

. (45)

0 (1/Rt )P'i Bi
m2

−P0iH Bi
m3

1
2 (3/Rs −1/Rt )P't Bi

m1

1
2 (3/Rt −1/Rs )Pi Bi'm2 −2P'iH Bi'm3

4.2.  

The stiffness matrix has the same expression as equations (30) and (31) in which the
definitions of Fi and L have changed to equations (45) and (41).

4.3.  

The mass matrix has the same expression as equations (38) and (39). However, Gi and
H in these two equations should be modified to,

Gi = &Pi Bi
m1

Pi Bi
m2

PiH Bi
m3', H= hr&1 1

1'. (46, 47)

5. ASSEMBLING STRUCTURAL PSEUDO STIFFNESS MATRIX AND
SOLUTION PROCEDURE

Structural free vibration analysis generally requires to solve an eigenvalue problem as
follows:

(K− lM)D=0. (48)

The structural stiffness matrix K and mass matrix M in equation (48) can be assembled
in the standard, direct fashion with those of the basic elements. Equation (48) constitutes
a standard linear eigenvalue problem which could be solved using any of a wide variety
methods. However, as all degrees of freedom of the structure are retained in the final set
of equations and often the number is very large, most of those methods become inefficient.
A way to alleviate this difficulty is by using a substructuring technique. This technique is
very popular in static structural analysis. In structural vibration analysis, Wittrick and
Williams [3] and Gupta [4] developed an algorithm for eigenvalue finding which can
incorporate the substructuring technique naturally. This algorithm evaluates the sign count
of the so called pseudo-stiffness matrix S(l)=K− lM to determine the positions of the
required eigenvalues rather than to calculate them directly.

In the present approach the first level of substructuring involves treating each basic
element as a substructure and eliminating freedoms at the internal reference meridians of
each element. The second level of substructuring involves sequential doubling the identical
basic element by taking advantage of the symmetric property of the shell of revolution so
as to create a panel. This is an effective way to eliminate the internal freedoms of the panel.
The third level of substructuring involves assembling substructures with the panels. The
final level of substructuring involves a breakdown of a shell of revolution into several
substructures.
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Denote S(l)i,element = ki,element − lmi,element as the pseudostiffness matrix of the ith basic
element. Now partition S(l)i,element into the form,

S(l)i,element =$S(l)(II)
i,element

S(l)(OI)
i,element

S(l)(IO)
i,element

S(l)(OO)
i,element%, (49)

in which S(l)(II)
i,element and S(l)(OO)

i,element are associated with the internal and external degrees of
freedom on the internal and external reference meridians of the element. Eliminating the
internal degrees of freedom obtains the pseudo-stiffness matrix of the element which is solely
associated with the external degrees of freedom of the element. Its expression is as follows:

S(l)(OO)
i,element −S(l)(OI)

i,element S(l)(II)−1

i,element S(l)(IO)
i,element . (50)

The local boundary conditions on the internal reference meridians should be taken into
account in the above eliminating process. The existing sign count s(l)i,element for this basic
element is,

s(l)i,element = s(S(l)(II)
i,element ), (51)

with its right side denoting the sign count of the matrix S(l)(II)
i,element which can be obtained

by reducing it to a triangular form that is further used to calculate equation (50).
Then, denote S(l)1

j,panel as the pseudostiffness matrix of the jth panel at the first doubling
step, which is assembled from two identical basic element whose pseudostiffness matrices
are only associated with their external degrees of freedom. Adding appropriate boundary
conditions on the internal degrees of freedom of this panel and eliminating them in the
same way as explained before, the obtained pseudostiffness matrix which is only associated
with the external degrees of freedom of the panel at the present step is denoted as S(l)(OO),1

j,panel

and the resulting sign count of it is s(l)1
j,panel . Repeating this doubling process several times

(say cj times), the obtained pseudostiffness matrix of this panel which is only associated
with its external degrees of freedom is denoted as S(l)(OO)

j,panel and its sign count is,

s(l)j,panel = s
cj

k=0

2cj − ks(l)k
j,panel , (52)

with s(l)0
j,panel = s(l)i,element (suppose the ith basic element is used to form the jth panel).

Next, assemble the pseudostiffness matrix of the lth substructure from those of its
composed panels. In this process, rotation and eccentricity transformations about the
panels may be involved. Also, appropriate boundary conditions need to be added on the
internal degrees of freedom of the substructure which will be further eliminated. After this,
the pseudostiffness matrix of the lth substructure which is only associated with its external
degrees of freedom can be obtained and denoted as S(l)l,sub . The existing sign count of this
substructure is,

s(l)l,sub = s(S(l)(II)
l,sub )+ s

Jl

j=1

s(l)lj,panel , (53)

where the first term in the right side of the above equation is the sign count of the
pseudostiffness matrix of this substructure which is only associated with its internal degrees
of freedom. Jl is the number of panels in it.

Finally, assemble the pseudo-stiffness matrix S(l)top of the entire structure from those
of its composed substructures. In this process, the rotation transformation about the
substructures may be used. Using Gauss elimination procedure to reduce the
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Figure 2. Mode shapes of a cooling tower calculated with a coarse mesh: (a) first mode (m=1, n=4); (b)
second mode (m=1, n=3); (c) third mode (m=1, n=6); (d) fourth mode (m=1, n=2); (e) fifth mode
(m=2, n=3); (f) sixth mode (m=2, n=5); (g) seventh mode (m=3, n=5).
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pseudostiffness matrix of the top level structure after having applied boundary conditions
to the appropriate degrees of freedom of it, its sign count can be found and denoted as
s(l)top . Therefore, the sign count of the entire structural pseudostiffness matrix calculated
in the multi-level substructuring way is,

s(l)struc = s(l)top + s
J

l=1

s(l)l,sub . (54)

The quantity s(l)struc provides the basis for the determination of eigenvalues, since
knowledge of its value indicates with certainty how many eigenvalues lie below any chosen
value of l. It is quite simple to use this property to establish upper and lower bounds to
any required eigenvalue. Having done this, there are a number of possible iteration
procedures which converge the required eigenvalue with a specified level of accuracy. In
the present work a simple Golden section method is used.

Once a required eigenvalue is determined it may be desired to find the corresponding
eigenvector. To this end, the following equation must be solved first,

S(l*)top Dtop =Q, (55)

where l* is the calculated eigenvalue. Dtop is the eigenvector associating with the degrees
of freedom retained at the top structural level. Column vector Q needs to be specified.
Quite commonly all terms of Q are taken to be zero except for the last term, which is
assigned an arbitrary value. However, this procedure has been shown to be inaccurate and
a detailed study [8] has revealed that the most reliable method of determining Dtop via
equation (55) is to assign a random value to each term of Q. This is the method that has
been used in the present study.

After Dtop has been calculated, the elements of the eigenvector which are associated with
the internal degrees of freedom at different levels of substructuring can be found using a
general equation as follows,

DI =−S(l*)(II)−1S(l*)(IO)DO , (56)

T 1

Natural frequencies (Hz) of a circular cylinder (m=1). The upper and lower values are from
TST and SDST analysis, respectively.

Circumferential number (n)
Number of ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
elements 7 6 8 9 5 10

16* 418·8 425·0 455·7 502·4 706·4 747·3
418·8 424·9 455·6 502·4 706·4 746·5

32 383·5 401·1 422·5 497·7 498·9 600·8
383·4 401·1 422·4 497·7 498·8 600·6

64 380·8 400·1 416·9 488·9 497·5 584·4
380·7 400·1 416·8 488·8 497·5 584·3

256 380·7 400·1 416·7 488·6 497·5 583·9
380·7 400·1 416·7 488·5 497·5 583·8

Flugge’s theory [9] 380·7 400·1 416·7 488·6 497·5 583·9

* Note: the natural frequencies are listed in a numerically ascending order which do not necessarily correspond
with the circumferential numbers shown above them as the coarse mesh used in this case)
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where DO is a vector containing the elements of the eigenvector which are associated with
the external degrees of freedom at corresponding levels of substructuring. Principally, the
above process for calculating the elements of eigenvectors can be carried out to any level
of substructure provided that the relationships of the substructures at various levels are
stored during the calculation. In the present study, the above process retreats to the level
of panels.

6. APPLICATIONS

The proposed method in the context of SDST and TST has been programmed. Selected
free vibration applications involving the use of this integrated software are described in
what follows. In all applications, the basic elements run the full length of a shell of
revolution and four reference meridians are used (i.e., ip =4) in every basic element, and
the degree of spline functions for interpolating u, v, w and ct is 3 (i.e.,
m1 =m2 =m3 =m4 =3) and that for cs is 2 (i.e. m5 =2).

6.1.      

The length, radius and thickness of this circular cylinder are 298·20 mm, 148·23 mm
0·508 mm, respectively. Its material properties are Younge’s modulus E=203·44 kN/mm2,
Poisson ratio n=0·285 and density r=7·8459×10−6 kg/mm3. It has diaphragm ends.
Five nodes are evenly distributed along the meridian. Both TST and SDST analysis are
employed. The calculated results for the first six natural frequencies using different number
of elements circumferentially are recorded in Table 1. For comparison, the theoretical
results by Egle and Soder [9] using Flugge’s thin shell theory are also given in Table 1.

The above results show that on one hand the present method can quickly converge to
the exact solution and on the other hand the coarse mesh (the case using 16 elements) can
greatly distort the results.

6.2.      

This example is from reference [10]. The cooling tower is an elliptic hyperboloid shell
of uniform thickness of 0·13 m. Its height is 95·25 m. Its radius at the bottom and top are

T 2

Natural frequencies (Hz) of a cooling tower calculated with a coarse mesh. (The values in
parentheses are from [10].)

Circumferential number (n)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Meridional number (m) 1 2 3 4 5 6

1 4·251 2·016 1·631 1·561 3·490 1·755
(4·002) (2·121) (1·684) (1·577) (3·498) (1·885)

– – – 4·407 – –
– – – (4·483) – –

2 – 4·810 2·277 3·238 2·846 3·788
– (4·613) (2·465) (3·208) (2·723) (3·956)
– – – 3·644 – –
– – – (3·630) – –

3 – – – 4·373 3·021 –
(4·321) (3·104) –
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T 3

Natural frequencies (Hz) of a cooling tower calculated with refined meshes using TST
analysis. (The values in parentheses correspond to the mesh with 64 elements.)

Circumferential number (n)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Meridional number (m) 2 3 4 5 6 7 8

1 2·015 2·267 1·652 – – – –
(2·015) (2·267) (1·652) – – – –

2 – 1·611 1·477 1·428 1·723 – –
– (1·611) (1·477) (1·426) (1·708) – –

3 – – – 1·677 1·768 2·070 2·490
– – – (1·675) (1·764) (2·060) (2·475)
– – – 2·610 2·595 2·182
– – – (2·609) (2·593) (2·172)

4 – – – – – – 2·656
– – – – – – (2·654)

36·85 m and 24·02 m, respectively, and that at height of 76·81 m is 22·99 m. The meridian
of the cooling tower is a parabola. The bottom is fixed and the top is free. The material
is assumed to be isotropic having Young’s modulus E=29·60 GN/m2, Poisson ratio
n=0·15 and density r=2400 kg/m3. In reference [10], Yang and Kapania calculated the
first fifteen natural frequencies using 48 dof quadrilateral doubly curved shell element with
a 5×5 mesh for half the shell. For comparison, six nodes evenly distributed along the
meridian and ten elements are used in the present method which is equivalent to the mesh
division used by Yang and Kapania. The results from both methods using TST analysis
are recorded in Table 2, and some of the mode shapes calculated using the present method
are shown in Figure 2.

The two results seem to be very close to each other. But from the obtained mode shapes
in Figure 2, it is seen that the mesh is too coarse. So two refined meshes are used which
have 32 and 64 elements respectively with eleven evenly distributed nodes on the meridian.
The obtained natural frequencies using both TST and SDST analysis are recorded in
Tables 3 and 4 and the first seven mode shapes (they are same for both refined meshes)
are depicted in Figure 3.

It can be seen from Tables 2 and 3 that the natural frequencies are substantially different
between the results from the coarse mesh and the refined meshes. The reason may be that
the shell is a sensitive structure and the mesh division will greatly affect the final results.
From Figures 2 and 3, it is also seen that the meridional number and the circumferential
number of the mode shapes can be perceived easier in the refined meshes than in the coarse
one. From Tables 3 and 4 it is seen that the obtained natural frequencies are convergent
and the results between TST and SDST analysis are quite close because the shell is
effectively thin.

To do more exercises with the present method and its corresponding software, the
vibrational behaviours of an elliptic hyperboloid shell having the same geometry as the
above but different material properties are analyzed. First, an orthotropic material
property is chosen with EL (meridional direction)=29·60 GN/m2, ET (circumferential
direction)=9·60 GN/m2, GLT =GTT =4·2899 GN/m2, and nLT =0·15. Then an anisotropic
material is used which is obtained by just rotating the above orthotropic material an angle
of 30°, i.e., the angle between the fibre direction and the meridian is 30°. Their
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Figure 3. Mode shapes of a cooling tower calculated with refined meshes: (a) first mode (m=2, n=5); (b)
second mode (m=2, n=4); (c) third mode (m=2, n=3); (d) fourth mode (m=1, n=4); (e) fifth mode
(m=3, n=5); (f) sixth mode (m=2, n=6); (g) seventh mode (m=3, n=6).
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T 4

Natural frequencies (Hz) of a cooling tower calculated with refined meshes using SDST
analysis. (The values in parentheses correspond to the mesh with 64 elements.)

Circumferential number (n)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Meridional number (m) 2 3 4 5 6 7 8

1 2·014 2·265 1·648 – – – –
(2·014) (2·265) (1·647) – – – –

2 – 1·607 1·477 1·427 1·712 – –
– (1·607) (1·477) (1·425) (1·707) – –

3 – – – 1·675 1·768 2·070 2·490
– – – (1·673) (1·764) (2·060) (2·474)
– – – 2·610 2·595 2·182 –
– – – (2·609) (2·592) (2·171) –

4 – – – – – – 2·656
– – – – – – (2·637)

T 5

Natural frequencies (Hz) of an orthotropic elliptic hyperboloid shell. (The
values in parentheses correspond to the mesh with 64 elements.)

Circumferential number (n)
ZXXXXXXCXXXXXXV

Meridional number (m) Theory 4 5 6

2 TST 1·124 1·065 1·151
(1·122) (1·064) (1·151)

SDST 1·122 1·062 1·150
(1·119) (1·061) (1·150)

3 TST – 1·208 1·218
– (1·208) (1·216)

SDST – 1·205 1·217
– (1·204) (1·214)

T 6

Natural frequencies (Hz) of an anisotropic elliptic hyperboloid shell. (The values
in parentheses correspond to the mesh with 64 elements.)

Circumferential number (n)
ZXXXXXXXXCXXXXXXXXV

Meridional number (m) Theory 3 4 5 6

2 TST 1·093 0·972 0·981 1·174
(1·093) (0·971) (0·980) (1·171)

SDST 1·088 0·968 0·978 1·173
(1·088) (0·968) (0·977) (1·170)

3 TST – – 1·245 –
– – (1·243) –

SDST – – 1·244 –
– – – (1·241) –
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Figure 4. Mode shapes of an orthotropic elliptic hyperboloid shell: (a) first mode (m=2, n=5); (b) second
mode (m=2, n=4); (c) third mode (m=2, n=6); (d) fourth mode (m=3, n=5); (e) fifth mode (m=3, n=6).

first five natural frequencies and the corresponding mode shapes are calculated. The results
are recorded in Tables 5 and 6 and shown in Figures 4 and 5 (mode shapes are same for
both meshes), respectively.

The values in Tables 5 and 6 indicate that the calculated natural frequencies are
convergent and the results between TST and SDST analysis are again very close. It is not
surprising to see that the mode shapes in Figure 5 are highly skewed because of the
anisotropic material used in this case.

6.3.       

The radius and thickness of the spherical shell are 36·85 m and 0·13 m, respectively. The
isotropic material properties for the spherical shell are the same as in the above example.
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Figure 5. Mode shapes of an anisotropic elliptic hyperboloid shell: (a) first mode (m=2, n=4); (b) second
mode (m=2, n=5); (c) third mode (m=2, n=3); (d) fourth mode (m=2, n=6); (e) fifth mode (m=3, n=5).

T 7

Natural frequencies (Hz) of a complete spherical shell. (The values in parentheses are
corresponding to the mesh with 64 elements.)

Mode
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Theory 1 2 3 4 5 6 7

TST 11·33 12·23 12·27 13·67 14·07 14·26 14·38
(11·33) (12·23) (12·27) (13·67) (14·07) (14·26) (14·38)

SDST 11·33 12·23 12·27 13·67 14·07 14·26 14·38
(11·32) (12·23) (12·27) (13·67) (14·07) (14·26) (14·38)
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Figure 6. Mode shapes of a complete spherical shell: (a) first mode; (b) second mode; (c) third mode; (d) fourth
mode; (e) fifth mode; (f) sixth mode; (g) seventh mode.

The displacements in the x, y and z directions at two poles are restrained. Eleven nodes
evenly distributed along the meridian and 32 and 64 elements are again used, respectively.
The first seven natural frequencies calculated using both TST and SDST analysis are
recorded in Table 7 and their corresponding mode shapes (same for both meshes) are
shown in Figure 6.

From Table 7 it is clear that the results are convergent and they are almost the same
for the TST and SDST analyses. There is no existing solution for this demanding
application. So comparison is omitted. From Figure 6, it is quite interesting to see that
the mode shapes of a spherical shell have their own distinct characters which are rarely
observed in other types of shells.
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7. CONCLUSIONS

A very efficient numerical method for analyzing the free vibration of shells of revolution
is presented. A multi-level substructuring technique is used in conjunction with the Sturm
sequence method for eigenvalue finding. Both thin and thick shells of revolution with
arbitrary laminations and boundary specification can be analyzed using the SDST and TST
analysis capabilities of the present method. The element constructed in this method is
unlike the usual elements which have fixed degrees of freedom and fixed order of continuity
of the interpolated displacement field. Its degrees of freedom can be increased or decreased
without changing the order of continuity of the interpolated displacement field. The
applications for this method show both its validity, efficiency and accuracy and its potential
use for more complicated structures involving shells of revolution which are often
encountered in aerospace engineering, marine engineering, power plant engineering and
civil engineering.
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